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Abstract 

 
This paper presents the qualification of the MicroPython Virtual Machine and its 

integration in spacecraft On Board Software. It explains the improvements made to the 

Virtual Machine. It describes the surrounding On Board Software services required in view 

of its operational use on board as part of the On Board Control Procedures solution. 
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1 INTRODUCTION 

 
n Board Control Procedures (OBCPs) are flight 

procedures that can be dynamically uploaded, 

even after launch, and executed on board. They 

provide a flexible way to operate the spacecraft, to 

extend the On Board Software (OBSW) functionality or 

to modify the behaviour of on board applications. They 

are increasingly envisaged for implementation of core 

Payload Software functionality. They are most of the 

time written in scripting language, compiled as bytecode 

and executed in a Virtual Machine (VM). 

 

To allow for the use cases sketched above, the VM that 

executes the OBCPs must be tightly integrated in the 

OBSW so that they can be controlled by the OBSW and 

they can access OBSW services.  This integration can 

however not be at the detriment of safety. Possible 

faults in the OBCP or in the VM cannot propagate and 

jeopardise the OBSW. Appropriate Fault Containment 

must be implemented. This does not exempt from 

qualifying the VM to the required level and from 

defining an adequate development and test approach for 

OBCPs.  

 

Spacebel has selected Python as Scripting Language and 

MicroPython
1
 as Virtual Machine for their new 

generation OBCP solution
2
.  

                                                 
1
 The MicroPython VM is developed by George Robotics. It is IPR of 

George Robotics LTD. It is made available under the MIT Open 

Source license. 
 

 

The VM port for LEON
3
 has been submitted to 

extensive testing, both on LEON emulator and on 

hardware target. It has been integrated in the EUCLID 

OBSW, together with the ESA qualified RTEMS and 

Math Library.  

 

 

2 DISCUSSION 
 

2.1 Typical Usage 
 

As defined in the ECSS-E-ST-70-01C [1] standard, 

OBCPs may come in two ways: On Board Operation 

Procedures (OBOP) and On Board Application 

Procedures (OBAP).  

 

OBOP are kinds of macro-command typically provided 

by the ground operations team and uploaded on board to 

operate the spacecraft. OBOP can also take part to the 

Fault Detection Isolation and Recovery (FDIR), where 

they detect complex failures or implement recovery 

procedures. They participate to on board autonomy 

when a rapid reaction is needed in spite of reduced 

spacecraft visibility or long propagation delay.  

 

                                                                             
2
 The OBCP Engine is developed by Spacebel. It is IPR of Spacebel 

S.A. 

 
3
 The porting on the LEON and the RTEMS has been funded by ESA. 

It is IPR of George Robotics LTD. The code and documentation are 
distributed under ESA Community License type 3, permissive. 

O 
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OBAP implement part of the basic functionality of the 

spacecraft. OBAP may be considered as part of or as 

extensions to the OBSW itself. They are increasingly 

being considered, in particular for payloads. 

 

The product requirements depend on the intended use. 

In this respect, OBAP are more demanding than OBOP, 

both in terms of the constructs of the language and of 

access to the on board services. While it defines the 

language features, the ECSS-E-ST-70-01C standard [1] 

does not fully specify the functionality and it does not 

define the actual interface to the underlying OBSW 

services. Additional requirements may be specific to the 

mission. The main requirements however vary little 

from a mission to another or from a domain to another 

so that the core solution can constitute a reusable 

building block that can be configured to the specific 

needs of the missions. 

 

2.2 Alternative Implementations 
 

As mentioned above, OBCPs are most of the time 

written in scripting language. Similar functionality can 

however also be provided in different ways:  

 

a. The Dynamic Linking of compiled library, 

provided it is supported by the RTOS, also allows 

extending the OBSW functionality. It however 

suffers from several drawbacks stemming mainly 

from the fact that the additional procedures execute 

at the same level as the OBSW. The additional 

module may potentially access any OBSW item and 

impacts the OBSW scheduling. As a result, possible 

misbehaviours clearly jeopardise the whole OBSW. 

 

b. In this respect, Time and Space Partitioning 

provides additional security through segregation 

while also allowing dynamically loading dedicated 

partitions with compiled libraries. This however 

assumes that the whole OBSW is based on TSP and 

that adequate hardware and software interfaces have 

been foreseen for the corresponding partitions. 

Though a potentially elegant solution this is not the 

case for most OBSW. 

 

c. This clearly leaves room for Interpreted 

Procedures. Interpreted OBCPs are pieces of 

software that can be uploaded, interpreted and 

executed on board, on demand, at any time and that 

may interact, to a given extent, with the rest of the 

data handling system (DHS).  They are written in a 

high level language that is first compiled on ground 

to yield an intermediate byte code. The bytecode is 

then uploaded to be executed on board in a virtual 

machine that interprets the instructions and interacts 

with the rest of the On Board Software – while also 

providing some kind of isolation for fault 

containment. They differ from native applicative 

components in that their invocation and execution 

may be controlled. This concerns in particular the 

ability to suspend or abort their execution. 

 

2.3 Selection of the Technology  
 

The various alternatives to implement interpreted 

procedures differ in the user language that is used to 

write the OBCPs on ground and in the Virtual Machine 

that interprets and executes them on board. 

 

User languages can be proprietary and specific or they 

can be open. Open languages offer the advantage of 

being well standardized and used by a wide community. 

This potentially allows reusing user-friendly 

development environment and reducing the learning 

curve of writing OBCPs.  

 

Virtual machines can be proprietary, open source or 

commercial. A key characteristic of VMs is their 

complexity that can make them heavy to embark and 

difficult to qualify for on board applications.  

 

With respect to the above discussions, Python, Java, 

Ruby and Lua were identified as the most popular 

languages. Amongst these languages, the standard 

Python and Java VMs were considered too heavy and 

the MicroPython VM (see [4]) was regarded as not 

mature. Lua was therefore initially selected and 

prototyping activities were successfully carried out.  

 

In the meantime MicroPython however gained in 

maturity. Also, though it was initially not destined to 

space applications, a first project funded by ESA 

allowed porting the MicroPython VM on LEON and 

RTEMS (see [3]). The decision was then taken not to 

disperse in different solutions but to join the ESA 

efforts on a common target, in order to qualify the 

MicroPython VM, with the intent to reuse it as building 

block on future ESA missions. 

 

Python is a widely used powerful scripting language. 

MicroPython implements Python 3.4, with however 

some subtle differences or limitations, such as the 

support of only a few standard Python modules, 

justified by design choices taking into account 

constrained embedded environments. 

 

The MicroPython implementation features a modern, 

efficient, highly portable and light-weight 

implementation with small memory footprint and fast 

execution designed to be embedded in applications (see 

[3]). 
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3 IMPLEMENTATION 
 

Scripting languages usually assume that the procedures 

are compiled and executed on the same platform. 

However, for technical and safety constraints embarking 

a parser and a compiler on board is not an option: their 

implementation is usually too complex and their 

execution requires too much memory and consumes too 

much processing power. The code that is executed on 

board must therefore first be compiled on ground and 

then uploaded from ground to board.  

 

  

Figure 1: On Board Control Procedure Chain 

 

The environment is therefore broken down into two 

parts, namely the Ground Development Environment 

and the On Board Execution Environment. Optionally, a 

Debugging Environment on Ground can complete the 

solution. 

 

3.1 Ground Development Environment 
 

The OBCP Ground Development Environment must 

ideally be integrated in the overall On Board Software 

Development Environment. 

 

 
 

Figure 2: Ground Development Environment 

 

It consists in a syntactic OBCP Editor to code the OBCP 

in high level user language and an OBCP Compiler that 

translates the high level source language in the target 

byte code.  

 

The OBCP Editor can be any standard Python 

development environment. 

 

The OBCP Compiler is provided as part of the 

MicroPython VM solution. Ahead of the OBCP 

Compilation, an “Import Expander” tool allows building 

a single OBCP file from multiple files importing one 

another – this preprocessing is necessary because 

dynamic import is not supported in the VM on board
4
. 

The tool also interfaces to the Satellite Reference Data 

Base (SRDB) in order to resolve symbolic naming by 

replacing the SRDB names used in the OBCPs by their 

corresponding value or address; such pre-processing 

prevents storing the whole SRDB on board or uploading 

it as part of the OBCPs. 

 

 

3.2 Ground Debugging Environment 
 

OBCPs must be exercised and debugged on ground 

before being loaded and executed on board.  

 

With OBCPs written in MicroPython, the simplest, 

cheapest and widely available debugging environment is 

the native Python 3.4, supported by adequate stubs to 

replace any interface between the OBCP and the 

OBSW. In place of standard Python 3.4, it is also 

possible to build a native MicroPython interpreter. 

However, as those native interpreters are not fully 

representative, such tests need to be completed with 

adequate test campaign on the target On Board 

Execution Environment, either on an SVF or on a 

hardware test bench. 

 

 
 

Figure 3: Ground Debugging Environment 

 

3.3 On Board Execution Environment 
 

The OBCPs can then be uploaded on board for 

execution. The On Board Execution Environment 

consists in an OBCP Interpreter surrounded by OBSW 

services. The OBCP Interpreter is implemented by the 

MicroPython Virtual Machine (VM). The surrounding 

OBSW Services that constitute the On Board Execution 

Environment are the OBCP Engine, the OBCP Storage, 

the OBCP TM/TC Interface and the OBCP VM 

Interface.  

 

                                                 
4
 The loading of modules is a functionality supported by MicroPython 

that has been de-scoped from the qualification. It is not used by the 
OBCP Engine. 
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Figure 4: On Board Execution Environment 

 

These software components are described further down 

in this paper.  

 

a. Virtual Machine 

 

The MicroPython Virtual Machine is a C library. It is 

purely passive, with one entry point, and it must be 

provided with a pointer to the bytecode to be executed.  

 

The VM executes bytecode and is highly optimised for 

speed. Since the operations are dispatched to the 

runtime, most operations of the VM executor are short, 

the exception being those that deal with MicroPython 

exception handling. The VM implementation of 

exception uses C language's non-local-return (NLR), 

which is essentially a stack of state buffers where the 

VM can quickly return in case of exception. 

 

When executing a script, the VM can be controlled by 

external entities through two mechanisms: 

 A hook mechanism that regularly calls a user-defined 

C function while executing the MicroPython script. 

 User-defined extensions to the MicroPython language 

can be developed. When called from a MicroPython 

script, a user-defined C function is also called. 

These two mechanisms are sufficient to integrate, 

control and monitor the execution of OBCPs in an On 

Board Software. 

 

Beside the storage of the bytecodes, the execution of 

MicroPython scripts requires memory. Several kinds of 

memory are used by the VM (on top of the static code 

and data areas): 

 A dedicated heap to allocate and free dynamic Python 

objects when needed. 

 A Python stack to allocate objects and data 

corresponding to a local context. 

 The C stack required for the execution of the VM 

itself. 

The VM executes a given bytecode from the start to the 

end (normal exit or uncaught Python exception) unless 

an abort is required from the OBSW. Several instances 

of VM can coexist, each one having its own task, state 

and memory. This allows running multiple OBCP in 

parallel, possibly with different priorities (see OBCP 

Engine below). 

 

The MicroPython objects are represented by a word. 

Depending on the representation choice, a word may 

represent a pointer to a MicroPython object structure, a 

signed integer with a defined range, an interned string or 

a floating-point number. The object representation also 

has impacts in term of performance and memory usage. 

For instance, the shortest object representation using 

only 32 bits cannot hold a 64-bits floating point value; 

hence such an object needs to be allocated on the heap. 

 

b. OBCP TM/TC Interface 

 

This component implements the standard space-to-

ground TM/TC interface of the OBCP Interpreter as per 

ECSS-E-70-41A standard [2], with an additional 

telecommand to upload an OBCP from a file. 

 

As defined in the ECSS-E-70-41A, the PUS Service 18 

provides standard service requests and reports for 

uploading OBCPs, controlling the execution of these 

OBCP and monitoring their status. To this end, it 

interacts with the OBCP Storage and the OBCP Engine. 

The improvements brought by the revision ECSS-E-70-

41C are mainly to be found in the alignment with the 

ECSS-E-ST-70-01C, in the upload from files and in the 

definition of aggregated commands that can be used as 

actions. 

 

c. OBCP Storage 

 

The OBCP Storage is in charge of handling the 

organisation of OBCP accesses in memory. It manages 

a collection of OBCPs potentially located on different 

memory areas (RAM, EEPROM…). 

 

d. OBCP Engine 

 

The OBCP Engine is in charge of controlling and 

monitoring the execution of the OBCPs.  It allows to 

start/stop suspend/resume/abort… the execution of an 

OBCP as required by the ground TC. It also makes 

observable the current status (OBCP state, step being 

executed). 

 

The OBCP Engine allows for concurrent execution of 

several OBCPs. As already indicated, one VM only 

executes a single OBCP at a time. However, there can 

be several VM instances, each in a dedicated RTEMS 

task. Such a task has no specific real-time constraint and 

does not need to be synchronized with the rest of the 

OBSW. It is also not possible to anticipate its CPU 

usage so it should be created with the lowest priority in 

the system. 

 

The OBCP Engine interacts with the VM through the 

hook mechanism and via the user-defined extensions to 

the MicroPython language to indicate that a 
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suspend/resume/stop request has to be executed. In case 

of a stop/abort, a system exception is raised in the 

MicroPython script, leading to its ending. 

 

e. OBCP VM Interfaces 

 

The OBCP Interpreter must provide the OBCPs with 

access to selected services of the underlying DHSW. 

User-defined extensions to MicroPython language are 

implemented in this component.  

 

The user-defined extensions are as required by the 

OBCP ECSS-E-ST-70-01C standard. In particular, it 

provides the following functions to an OBCP as part of 

a built-in obcpe MicroPython module: 

 Format and send TC; 

 Check TC acknowledge; 

 Generate a TM packet; 

 Generate an event (triggering the event-report and 

event-action); 

 Retrieve OBET; 

 Retrieve OBCP parameters provided by ground TC; 

 Read/write parameters from the Central Data Pool; 

 Read/write authorized memory areas; 

 Subscribe/unsubscribe to TM packets; 

 Receive TM packet; 

 Sleep; 

 Wait synchronisation signal; 

 Notify new step in OBCP. 

 

Writing to memory or to parameters in the Central Data 

Pool from an OBCP can be considered too dangerous; it 

is therefore possible to inhibit such functionality. 

 

 

4 VM QUALIFICATION 
 

As already mentioned, the OBCP Engine is a classical 

OBSW development. It adheres to space standards for 

category B software. Its qualification is therefore not 

further described in this section, apart from the specific 

MicroPython VM fault containment measures that have 

been adopted.  

 

The MicroPython VM has been qualified, taking into 

account the fact that the MicroPython VM is an existing 

library developed outside the space community. For this 

reason, several requirements from the ECSS-E-ST-40C 

standard have been relaxed or completed by alternative 

means. For instance, the code does not adhere to a strict 

coding standard, but is has been subject to static code 

analysis and code coverage. The classical approach for 

unit test has not been followed, but the same objectives 

are achieved through end-to-end testing. 

 

The MicroPython VM qualification activities have 

encompassed many aspects and produced a set of plans, 

analyses, documents and tests, technical improvements, 

bringing the product toward a state compatible with 

stringent flight requirements. 

 

4.1 Documentation 
 

In line with the previous considerations, standard ECSS 

documentation has been produced for the OBCP Engine 

while a coherent set of documents have been produced 

for the MicroPython VM qualification, reflecting the 

ECSS processes that have been performed: 

 Software Development Plan; 

 Configuration and Data Management Plan; 

 Software Verification Plan; 

 Software Validation Plan; 

 Software Requirement Specification; 

 Software Design Document; 

 Test Plans and Test Reports; 

 Software User Manual; 

 Software Verification Report; 

 Software Release Document (incl. Software 

Configuration File). 

 

Because the VM is reused software, the ECSS “Design 

and Implementation engineering process” has been 

considered mostly out of scope, together with the 

associated documents. All other ECSS engineering 

processes have been performed, including a reverse-

engineering of the VM for the “Software Requirement 

and Architecture engineering process”. 

 

4.2 Configuration Control 
 

The MicroPython VM for LEON lives as a branch of 

the main MicroPython github project. In the frame of 

the qualification, however, a strict and dedicated 

configuration control has been put in place for this 

MicroPython VM for LEON. This is managed as 

follows. 

 

To benefit from the Open Source approach and from the 

usage and implicit testing by a large community, the 

decision has been taken to stick to the maximum extent 

to the master branch. The other way round, the 

qualification effort and the improvements discussed 

above therefore also benefit to this main branch. 

 

Agreed changes (improvements or bug fixes) that have 

been implemented in the MicroPython github master 

branch are ported on the MicroPython VM for LEON 

branch. Dedicated improvements or bug fixes may only 

concern this specific branch. At key points in the 

project, the corresponding code is extracted and placed 

under configuration of the qualification project. 
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This two-step approach is necessary because the 

MicroPython developers are not the same as the 

qualification team. It enables the MicroPython overall 

project to progress and improve without strict 

constraints, while ensuring that the qualified product 

code is well under configuration control. Last but not 

least, it does not cut the MicroPython VM for LEON 

branch from the master branch, so that future evolutions 

of MicroPython can still be easily ported in the 

qualification project. 

 

4.3 MicroPython Configuration Selection 
 

The MicroPython VM supports a large subset of Python 

3.4.  It can be configured through the selection of 

options amongst more than a hundred macros allowing 

for various trade-offs. For the purpose of the 

qualification, the scope has been reduced and 

functionality such as complex numbers or print 

formatting has for instance been excluded.  

 

For the MicroPython object representation, two 

configurations typical of the OBSW needs have been 

selected and qualified: 

 One with 32-bits object representation, providing the 

smallest memory footprint. However, this 

representation requires dynamic allocation on the heap 

when floating-point values or integers above 2^31 are 

used; 

 One with 64-bits “NaN boxing” object representation, 

most efficient when using floating-point values. This 

technique exploits the unused bits of the floating-point 

representation of Not-A-Number in order to identify 

whether the object is an integer, a floating-point value, 

a pointer or an interned string. A key advantage of this 

representation lies in the fact that it does not require 

any Python heap allocation for floating-point numbers. 

 

4.4 Technical Improvements 
 

As part of the qualification activities, several 

improvements have been brought to the MicroPython 

VM: 

 Previously sole C stack has been divided into a C 

stack and a Python stack. This gives more control on 

the stack usage and prevents stack corruptions; 

 Identification of recursion in C functions, whether 

direct and indirect, followed by rewriting to eliminate 

or control such recursion (see below); 

 Addition of several configuration macros, in order to 

reduce the code to the minimum needed by qualified 

MicroPython features; 

 Addition of an entry-point function to start execution 

and report details of potential uncaught exception in a 

dedicated C structure; 

 Improved monitoring of memory usage (heap, C stack 

and Python stack); 

 Python exception handling implemented with NLR 

mechanism relying on LEON software “flush register” 

trap 0x83, implemented in standard RTEMS, was 

removed from qualified ESA RTEMS and therefore 

has to be reintroduced in the MicroPython VM; 

 Improvement of the memory usage for the 64-bits 

“NaN boxing” object representation. It now supports 

32-bit integer values (it was only supporting 31 bits 

before without heap allocation). 

 

4.5 Code Analysis Activities 
 

Static code analysis has been performed on the 

MicroPython VM code to identify potential threats and 

bugs, using PolySpace. The discovered issues have all 

been fixed or properly justified. 

 

Code coverage measurement has been performed when 

executing the MicroPython VM qualification tests, and 

non-covered code duly justified. A particular effort has 

been put on the MicroPython exception handling code. 

  

Finally, the MicroPython C code is inherently recursive. 

The complete call graph of the code has been 

established, and all cycles identified. Moreover, for each 

cycle, the C stack usage is verified in order to prevent 

memory corruption (in case the remaining C stack is too 

low, the running OBCP is aborted). 

 

4.6 Fault Containment  
 

Special fault containment measures are included in the 

MicroPython VM and/or OBCP Engine design to avoid 

propagation of errors stemming from an OBCP or from 

the MicroPython VM. These measures are summarized 

below. 

 

a. CPU Usage 

 

As the CPU usage of a MicroPython VM cannot be 

anticipated (it depends on the OBCP), the design 

decision is to execute MicroPython VM into low 

priority tasks of the OBSW. These tasks are not cyclic 

and do not have real-time constraints. There can be 

several priorities defined for the VM; VM of the same 

priority are executed according to a round-robin 

scheduling (also known as timeslicing). The only risk is 

that high priority OBCP’s could prevent low priority 

OBCP from executing. 

 

b. C Stack Usage 

 

When started, the VM is asked to use only a part of the 

available C task stack. The VM dynamically checks that 

its C stack usage remains below the allocated range. In 

case of problem detected by the VM, the OBCP 

execution is stopped with an exception. The margin to 
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be provided between C task stack and VM C stack can 

be determined by static analysis of the code (static stack 

analysis). This mechanism is implemented in the VM in 

order to prevent any issue with recursive C function 

calls. 

 

c. MicroPython Stack Usage 

 

Any memory required for the MicroPython OBCP stack 

is allocated in a dedicated memory area, specified when 

starting the VM. In case of stack overflow, this is 

detected by the VM and the OBCP execution is stopped 

with an exception. 

 

d. MicroPython Heap Usage 

 

Any memory required for the MicroPython OBCP heap 

is allocated in a dedicated memory area, specified when 

starting the VM. In case of memory shortage, this is 

detected by the VM and the OBCP execution is stopped 

with an exception. As the allocation of memory in the 

heap is not deterministic in term of CPU usage 

(dynamic allocation and free), there is a specific 

function to lock access to the heap to the OBCP. 

Typically, heap access can be granted during OBCP 

initialisation but locked once that stage is completed. 

 

e. Interface with OBSW 

 

The MicroPython VM and the OBCP VM Interface 

perform preliminary checks of all input parameters, and 

raise an error before executing the requested function. 

This allows the VM to generate specific exceptions 

depending on the error (floating-point exception, 

memory exception, invalid type exception, etc.). As a 

general principle, all errors detected by the VM or by 

the OBCP Engine result in a MicroPython exception. 

Critical errors also immediately abort the OBCP 

execution. 

 

f. Floating-Point Errors 

 

Floating-point errors are mainly avoided by careful 

check of arguments whenever a floating-point operation 

is performed. However, they are nearly impossible to 

predict in all situations: floating-point exceptions can 

occur when calling mathematical library functions, but 

also during simple addition, multiplication or division 

operations. 

 

For this reason, floating-point exceptions are treated 

specifically for the OBCP Engine. In case a floating-

point trap (trap 0x08) occurs, if the execution context is 

a MicroPython VM task, then the corresponding OBCP 

execution is immediately aborted. If the context is not a 

MicroPython VM task, then the nominal exception 

handling is executed – typically a processor reset. 

 

 

 

4.7 Test Approach 
 

The MicroPython VM has then been submitted to 

intensive testing. 

 

For the MicroPython VM, the following tests are 

executed: 

 All relevant tests defined in the frame of the 

MicroPython VM master branch and MicroPython 

VM for LEON branch; 

 C Python standard test suite for the core Python 

language (math functions, list, dictionary, etc.); 

 Additional tests for improvement of the code coverage 

(in particular regarding exception handling)  

 

As already indicated, the unit test objectives have been 

met through end-to-end testing. End-to-end testing 

means that a MicroPython script is produced and 

compiled. It is then uploaded for execution by the 

MicroPython VM. The output of the script is retrieved 

from the standard output (LEON UART line, but could 

be any other interface) and compared with the expected 

result.  

 

All tests are automated. They are first executed on a 

LEON emulator (Spacebel Target Simulator). Then the 

tests are repeated in the EUCLID SVF (based on ESOC 

LEON Emulator) and in the EUCLID FUMO (hardware 

test bench). 

 

A test run is performed on LEON emulator with code 

instrumentation in order to gather the code coverage 

measurements. 

 

 

5 CONCLUSION 
 

A new generation OBCP solution has been developed 

based on the Python Scripting Language and on the 

MicroPython Virtual Machine as well as on surrounding 

OBSW services, which implement the so called OBCP 

Engine. 

 

The OBCP Engine development followed a classical 

OBSW development process. It adheres to space 

standards for category B software and it produced the 

standard ECSS documentation. 

 

The MicroPython VM has been submitted to intensive 

testing and to static code analysis and the discovered 

issues have all been fixed or properly justified. Special 

fault containment measures have been implemented to 

avoid propagation of errors stemming from an OBCP or 

from the VM. Additional technical improvements have 

been brought in view of the integration and use on 

board. A coherent set of documents has been produced, 

reflecting the ECSS processes that have been performed 

for the MicroPython VM qualification. 
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The MicroPython VM has been integrated with the 

OBCP Engine and demonstrated in the EUCLID 

OBSW, on a LEON2 processor, with the ESA qualified 

RTEMS and Mathematical Library. 

 

The activity results in two reusable building blocks that 

can be used jointly or separately:  

 the MicroPython VM and  

 the OBCP Engine. 

 

EUCLID should be the first spacecraft to benefit from 

these new building blocks. 
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