
1

MicroPython Virtual Machine

for

On Board Control Procedures

Thomas Laroche
(1)

, Pierre Denis
(1)

, Paul Parisis
(2)

, Damien George
(3)

,

David Sanchez de la Llana
(4)

, Thanassis Tsiodras
(4)

(1) Spacebel, Hoeilaart Office Park, Ildefonse Vandammestraat 7, B-1560 Hoeilaart, Belgium, name.surname@spacebel.be

(2) Spacebel, Liège Science Park, Rue des Chasseurs Ardennais 6, B-4031 Angleur, Belgium, name.surname@spacebel.be

(3) George Robotics Limited, c/o PEM, Salisbury House, Station Road Cambridge, CB1 2LA, United Kingdom dpgeorge@georgerobotics.co.uk

(4) ESA – ESTEC - Keplerlaan 1, P.O Box 299, 2200 AG Noordwijk, The Netherlands, name.surname@esa.int

Abstract

This paper presents the qualification of the MicroPython Virtual Machine and its

integration in spacecraft On Board Software. It explains the improvements made to the

Virtual Machine. It describes the surrounding On Board Software services required in view

of its operational use on board as part of the On Board Control Procedures solution.

Keywords: On Board Software, On Board Control Procedures, On Board Control

Procedure Engine, Virtual Machine, Python, MicroPython, Improvements, Integration,

Qualification,

1 INTRODUCTION

n Board Control Procedures (OBCPs) are flight

procedures that can be dynamically uploaded,

even after launch, and executed on board. They

provide a flexible way to operate the spacecraft, to

extend the On Board Software (OBSW) functionality or

to modify the behaviour of on board applications. They

are increasingly envisaged for implementation of core

Payload Software functionality. They are most of the

time written in scripting language, compiled as bytecode

and executed in a Virtual Machine (VM).

To allow for the use cases sketched above, the VM that

executes the OBCPs must be tightly integrated in the

OBSW so that they can be controlled by the OBSW and

they can access OBSW services. This integration can

however not be at the detriment of safety. Possible

faults in the OBCP or in the VM cannot propagate and

jeopardise the OBSW. Appropriate Fault Containment

must be implemented. This does not exempt from

qualifying the VM to the required level and from

defining an adequate development and test approach for

OBCPs.

Spacebel has selected Python as Scripting Language and

MicroPython
1
 as Virtual Machine for their new

generation OBCP solution
2
.

1
 The MicroPython VM is developed by George Robotics. It is IPR of

George Robotics LTD. It is made available under the MIT Open

Source license.

The VM port for LEON
3
 has been submitted to

extensive testing, both on LEON emulator and on

hardware target. It has been integrated in the EUCLID

OBSW, together with the ESA qualified RTEMS and

Math Library.

2 DISCUSSION

2.1 Typical Usage

As defined in the ECSS-E-ST-70-01C [1] standard,

OBCPs may come in two ways: On Board Operation

Procedures (OBOP) and On Board Application

Procedures (OBAP).

OBOP are kinds of macro-command typically provided

by the ground operations team and uploaded on board to

operate the spacecraft. OBOP can also take part to the

Fault Detection Isolation and Recovery (FDIR), where

they detect complex failures or implement recovery

procedures. They participate to on board autonomy

when a rapid reaction is needed in spite of reduced

spacecraft visibility or long propagation delay.

2
 The OBCP Engine is developed by Spacebel. It is IPR of Spacebel

S.A.

3
 The porting on the LEON and the RTEMS has been funded by ESA.

It is IPR of George Robotics LTD. The code and documentation are
distributed under ESA Community License type 3, permissive.

O

mailto:name.surname@spacebel.be
mailto:name.surname@spacebel.be
mailto:dpgeorge@georgerobotics.co.uk
mailto:name.surname@esa.int
mailto:name.surname@esa.int

2

OBAP implement part of the basic functionality of the

spacecraft. OBAP may be considered as part of or as

extensions to the OBSW itself. They are increasingly

being considered, in particular for payloads.

The product requirements depend on the intended use.

In this respect, OBAP are more demanding than OBOP,

both in terms of the constructs of the language and of

access to the on board services. While it defines the

language features, the ECSS-E-ST-70-01C standard [1]

does not fully specify the functionality and it does not

define the actual interface to the underlying OBSW

services. Additional requirements may be specific to the

mission. The main requirements however vary little

from a mission to another or from a domain to another

so that the core solution can constitute a reusable

building block that can be configured to the specific

needs of the missions.

2.2 Alternative Implementations

As mentioned above, OBCPs are most of the time

written in scripting language. Similar functionality can

however also be provided in different ways:

a. The Dynamic Linking of compiled library,

provided it is supported by the RTOS, also allows

extending the OBSW functionality. It however

suffers from several drawbacks stemming mainly

from the fact that the additional procedures execute

at the same level as the OBSW. The additional

module may potentially access any OBSW item and

impacts the OBSW scheduling. As a result, possible

misbehaviours clearly jeopardise the whole OBSW.

b. In this respect, Time and Space Partitioning

provides additional security through segregation

while also allowing dynamically loading dedicated

partitions with compiled libraries. This however

assumes that the whole OBSW is based on TSP and

that adequate hardware and software interfaces have

been foreseen for the corresponding partitions.

Though a potentially elegant solution this is not the

case for most OBSW.

c. This clearly leaves room for Interpreted

Procedures. Interpreted OBCPs are pieces of

software that can be uploaded, interpreted and

executed on board, on demand, at any time and that

may interact, to a given extent, with the rest of the

data handling system (DHS). They are written in a

high level language that is first compiled on ground

to yield an intermediate byte code. The bytecode is

then uploaded to be executed on board in a virtual

machine that interprets the instructions and interacts

with the rest of the On Board Software – while also

providing some kind of isolation for fault

containment. They differ from native applicative

components in that their invocation and execution

may be controlled. This concerns in particular the

ability to suspend or abort their execution.

2.3 Selection of the Technology

The various alternatives to implement interpreted

procedures differ in the user language that is used to

write the OBCPs on ground and in the Virtual Machine

that interprets and executes them on board.

User languages can be proprietary and specific or they

can be open. Open languages offer the advantage of

being well standardized and used by a wide community.

This potentially allows reusing user-friendly

development environment and reducing the learning

curve of writing OBCPs.

Virtual machines can be proprietary, open source or

commercial. A key characteristic of VMs is their

complexity that can make them heavy to embark and

difficult to qualify for on board applications.

With respect to the above discussions, Python, Java,

Ruby and Lua were identified as the most popular

languages. Amongst these languages, the standard

Python and Java VMs were considered too heavy and

the MicroPython VM (see [4]) was regarded as not

mature. Lua was therefore initially selected and

prototyping activities were successfully carried out.

In the meantime MicroPython however gained in

maturity. Also, though it was initially not destined to

space applications, a first project funded by ESA

allowed porting the MicroPython VM on LEON and

RTEMS (see [3]). The decision was then taken not to

disperse in different solutions but to join the ESA

efforts on a common target, in order to qualify the

MicroPython VM, with the intent to reuse it as building

block on future ESA missions.

Python is a widely used powerful scripting language.

MicroPython implements Python 3.4, with however

some subtle differences or limitations, such as the

support of only a few standard Python modules,

justified by design choices taking into account

constrained embedded environments.

The MicroPython implementation features a modern,

efficient, highly portable and light-weight

implementation with small memory footprint and fast

execution designed to be embedded in applications (see

[3]).

3

3 IMPLEMENTATION

Scripting languages usually assume that the procedures

are compiled and executed on the same platform.

However, for technical and safety constraints embarking

a parser and a compiler on board is not an option: their

implementation is usually too complex and their

execution requires too much memory and consumes too

much processing power. The code that is executed on

board must therefore first be compiled on ground and

then uploaded from ground to board.

Figure 1: On Board Control Procedure Chain

The environment is therefore broken down into two

parts, namely the Ground Development Environment

and the On Board Execution Environment. Optionally, a

Debugging Environment on Ground can complete the

solution.

3.1 Ground Development Environment

The OBCP Ground Development Environment must

ideally be integrated in the overall On Board Software

Development Environment.

Figure 2: Ground Development Environment

It consists in a syntactic OBCP Editor to code the OBCP

in high level user language and an OBCP Compiler that

translates the high level source language in the target

byte code.

The OBCP Editor can be any standard Python

development environment.

The OBCP Compiler is provided as part of the

MicroPython VM solution. Ahead of the OBCP

Compilation, an “Import Expander” tool allows building

a single OBCP file from multiple files importing one

another – this preprocessing is necessary because

dynamic import is not supported in the VM on board
4
.

The tool also interfaces to the Satellite Reference Data

Base (SRDB) in order to resolve symbolic naming by

replacing the SRDB names used in the OBCPs by their

corresponding value or address; such pre-processing

prevents storing the whole SRDB on board or uploading

it as part of the OBCPs.

3.2 Ground Debugging Environment

OBCPs must be exercised and debugged on ground

before being loaded and executed on board.

With OBCPs written in MicroPython, the simplest,

cheapest and widely available debugging environment is

the native Python 3.4, supported by adequate stubs to

replace any interface between the OBCP and the

OBSW. In place of standard Python 3.4, it is also

possible to build a native MicroPython interpreter.

However, as those native interpreters are not fully

representative, such tests need to be completed with

adequate test campaign on the target On Board

Execution Environment, either on an SVF or on a

hardware test bench.

Figure 3: Ground Debugging Environment

3.3 On Board Execution Environment

The OBCPs can then be uploaded on board for

execution. The On Board Execution Environment

consists in an OBCP Interpreter surrounded by OBSW

services. The OBCP Interpreter is implemented by the

MicroPython Virtual Machine (VM). The surrounding

OBSW Services that constitute the On Board Execution

Environment are the OBCP Engine, the OBCP Storage,

the OBCP TM/TC Interface and the OBCP VM

Interface.

4
 The loading of modules is a functionality supported by MicroPython

that has been de-scoped from the qualification. It is not used by the
OBCP Engine.

4

Figure 4: On Board Execution Environment

These software components are described further down

in this paper.

a. Virtual Machine

The MicroPython Virtual Machine is a C library. It is

purely passive, with one entry point, and it must be

provided with a pointer to the bytecode to be executed.

The VM executes bytecode and is highly optimised for

speed. Since the operations are dispatched to the

runtime, most operations of the VM executor are short,

the exception being those that deal with MicroPython

exception handling. The VM implementation of

exception uses C language's non-local-return (NLR),

which is essentially a stack of state buffers where the

VM can quickly return in case of exception.

When executing a script, the VM can be controlled by

external entities through two mechanisms:

 A hook mechanism that regularly calls a user-defined

C function while executing the MicroPython script.

 User-defined extensions to the MicroPython language

can be developed. When called from a MicroPython

script, a user-defined C function is also called.

These two mechanisms are sufficient to integrate,

control and monitor the execution of OBCPs in an On

Board Software.

Beside the storage of the bytecodes, the execution of

MicroPython scripts requires memory. Several kinds of

memory are used by the VM (on top of the static code

and data areas):

 A dedicated heap to allocate and free dynamic Python

objects when needed.

 A Python stack to allocate objects and data

corresponding to a local context.

 The C stack required for the execution of the VM

itself.

The VM executes a given bytecode from the start to the

end (normal exit or uncaught Python exception) unless

an abort is required from the OBSW. Several instances

of VM can coexist, each one having its own task, state

and memory. This allows running multiple OBCP in

parallel, possibly with different priorities (see OBCP

Engine below).

The MicroPython objects are represented by a word.

Depending on the representation choice, a word may

represent a pointer to a MicroPython object structure, a

signed integer with a defined range, an interned string or

a floating-point number. The object representation also

has impacts in term of performance and memory usage.

For instance, the shortest object representation using

only 32 bits cannot hold a 64-bits floating point value;

hence such an object needs to be allocated on the heap.

b. OBCP TM/TC Interface

This component implements the standard space-to-

ground TM/TC interface of the OBCP Interpreter as per

ECSS-E-70-41A standard [2], with an additional

telecommand to upload an OBCP from a file.

As defined in the ECSS-E-70-41A, the PUS Service 18

provides standard service requests and reports for

uploading OBCPs, controlling the execution of these

OBCP and monitoring their status. To this end, it

interacts with the OBCP Storage and the OBCP Engine.

The improvements brought by the revision ECSS-E-70-

41C are mainly to be found in the alignment with the

ECSS-E-ST-70-01C, in the upload from files and in the

definition of aggregated commands that can be used as

actions.

c. OBCP Storage

The OBCP Storage is in charge of handling the

organisation of OBCP accesses in memory. It manages

a collection of OBCPs potentially located on different

memory areas (RAM, EEPROM…).

d. OBCP Engine

The OBCP Engine is in charge of controlling and

monitoring the execution of the OBCPs. It allows to

start/stop suspend/resume/abort… the execution of an

OBCP as required by the ground TC. It also makes

observable the current status (OBCP state, step being

executed).

The OBCP Engine allows for concurrent execution of

several OBCPs. As already indicated, one VM only

executes a single OBCP at a time. However, there can

be several VM instances, each in a dedicated RTEMS

task. Such a task has no specific real-time constraint and

does not need to be synchronized with the rest of the

OBSW. It is also not possible to anticipate its CPU

usage so it should be created with the lowest priority in

the system.

The OBCP Engine interacts with the VM through the

hook mechanism and via the user-defined extensions to

the MicroPython language to indicate that a

5

suspend/resume/stop request has to be executed. In case

of a stop/abort, a system exception is raised in the

MicroPython script, leading to its ending.

e. OBCP VM Interfaces

The OBCP Interpreter must provide the OBCPs with

access to selected services of the underlying DHSW.

User-defined extensions to MicroPython language are

implemented in this component.

The user-defined extensions are as required by the

OBCP ECSS-E-ST-70-01C standard. In particular, it

provides the following functions to an OBCP as part of

a built-in obcpe MicroPython module:

 Format and send TC;

 Check TC acknowledge;

 Generate a TM packet;

 Generate an event (triggering the event-report and

event-action);

 Retrieve OBET;

 Retrieve OBCP parameters provided by ground TC;

 Read/write parameters from the Central Data Pool;

 Read/write authorized memory areas;

 Subscribe/unsubscribe to TM packets;

 Receive TM packet;

 Sleep;

 Wait synchronisation signal;

 Notify new step in OBCP.

Writing to memory or to parameters in the Central Data

Pool from an OBCP can be considered too dangerous; it

is therefore possible to inhibit such functionality.

4 VM QUALIFICATION

As already mentioned, the OBCP Engine is a classical

OBSW development. It adheres to space standards for

category B software. Its qualification is therefore not

further described in this section, apart from the specific

MicroPython VM fault containment measures that have

been adopted.

The MicroPython VM has been qualified, taking into

account the fact that the MicroPython VM is an existing

library developed outside the space community. For this

reason, several requirements from the ECSS-E-ST-40C

standard have been relaxed or completed by alternative

means. For instance, the code does not adhere to a strict

coding standard, but is has been subject to static code

analysis and code coverage. The classical approach for

unit test has not been followed, but the same objectives

are achieved through end-to-end testing.

The MicroPython VM qualification activities have

encompassed many aspects and produced a set of plans,

analyses, documents and tests, technical improvements,

bringing the product toward a state compatible with

stringent flight requirements.

4.1 Documentation

In line with the previous considerations, standard ECSS

documentation has been produced for the OBCP Engine

while a coherent set of documents have been produced

for the MicroPython VM qualification, reflecting the

ECSS processes that have been performed:

 Software Development Plan;

 Configuration and Data Management Plan;

 Software Verification Plan;

 Software Validation Plan;

 Software Requirement Specification;

 Software Design Document;

 Test Plans and Test Reports;

 Software User Manual;

 Software Verification Report;

 Software Release Document (incl. Software

Configuration File).

Because the VM is reused software, the ECSS “Design

and Implementation engineering process” has been

considered mostly out of scope, together with the

associated documents. All other ECSS engineering

processes have been performed, including a reverse-

engineering of the VM for the “Software Requirement

and Architecture engineering process”.

4.2 Configuration Control

The MicroPython VM for LEON lives as a branch of

the main MicroPython github project. In the frame of

the qualification, however, a strict and dedicated

configuration control has been put in place for this

MicroPython VM for LEON. This is managed as

follows.

To benefit from the Open Source approach and from the

usage and implicit testing by a large community, the

decision has been taken to stick to the maximum extent

to the master branch. The other way round, the

qualification effort and the improvements discussed

above therefore also benefit to this main branch.

Agreed changes (improvements or bug fixes) that have

been implemented in the MicroPython github master

branch are ported on the MicroPython VM for LEON

branch. Dedicated improvements or bug fixes may only

concern this specific branch. At key points in the

project, the corresponding code is extracted and placed

under configuration of the qualification project.

6

This two-step approach is necessary because the

MicroPython developers are not the same as the

qualification team. It enables the MicroPython overall

project to progress and improve without strict

constraints, while ensuring that the qualified product

code is well under configuration control. Last but not

least, it does not cut the MicroPython VM for LEON

branch from the master branch, so that future evolutions

of MicroPython can still be easily ported in the

qualification project.

4.3 MicroPython Configuration Selection

The MicroPython VM supports a large subset of Python

3.4. It can be configured through the selection of

options amongst more than a hundred macros allowing

for various trade-offs. For the purpose of the

qualification, the scope has been reduced and

functionality such as complex numbers or print

formatting has for instance been excluded.

For the MicroPython object representation, two

configurations typical of the OBSW needs have been

selected and qualified:

 One with 32-bits object representation, providing the

smallest memory footprint. However, this

representation requires dynamic allocation on the heap

when floating-point values or integers above 2^31 are

used;

 One with 64-bits “NaN boxing” object representation,

most efficient when using floating-point values. This

technique exploits the unused bits of the floating-point

representation of Not-A-Number in order to identify

whether the object is an integer, a floating-point value,

a pointer or an interned string. A key advantage of this

representation lies in the fact that it does not require

any Python heap allocation for floating-point numbers.

4.4 Technical Improvements

As part of the qualification activities, several

improvements have been brought to the MicroPython

VM:

 Previously sole C stack has been divided into a C

stack and a Python stack. This gives more control on

the stack usage and prevents stack corruptions;

 Identification of recursion in C functions, whether

direct and indirect, followed by rewriting to eliminate

or control such recursion (see below);

 Addition of several configuration macros, in order to

reduce the code to the minimum needed by qualified

MicroPython features;

 Addition of an entry-point function to start execution

and report details of potential uncaught exception in a

dedicated C structure;

 Improved monitoring of memory usage (heap, C stack

and Python stack);

 Python exception handling implemented with NLR

mechanism relying on LEON software “flush register”

trap 0x83, implemented in standard RTEMS, was

removed from qualified ESA RTEMS and therefore

has to be reintroduced in the MicroPython VM;

 Improvement of the memory usage for the 64-bits

“NaN boxing” object representation. It now supports

32-bit integer values (it was only supporting 31 bits

before without heap allocation).

4.5 Code Analysis Activities

Static code analysis has been performed on the

MicroPython VM code to identify potential threats and

bugs, using PolySpace. The discovered issues have all

been fixed or properly justified.

Code coverage measurement has been performed when

executing the MicroPython VM qualification tests, and

non-covered code duly justified. A particular effort has

been put on the MicroPython exception handling code.

Finally, the MicroPython C code is inherently recursive.

The complete call graph of the code has been

established, and all cycles identified. Moreover, for each

cycle, the C stack usage is verified in order to prevent

memory corruption (in case the remaining C stack is too

low, the running OBCP is aborted).

4.6 Fault Containment

Special fault containment measures are included in the

MicroPython VM and/or OBCP Engine design to avoid

propagation of errors stemming from an OBCP or from

the MicroPython VM. These measures are summarized

below.

a. CPU Usage

As the CPU usage of a MicroPython VM cannot be

anticipated (it depends on the OBCP), the design

decision is to execute MicroPython VM into low

priority tasks of the OBSW. These tasks are not cyclic

and do not have real-time constraints. There can be

several priorities defined for the VM; VM of the same

priority are executed according to a round-robin

scheduling (also known as timeslicing). The only risk is

that high priority OBCP’s could prevent low priority

OBCP from executing.

b. C Stack Usage

When started, the VM is asked to use only a part of the

available C task stack. The VM dynamically checks that

its C stack usage remains below the allocated range. In

case of problem detected by the VM, the OBCP

execution is stopped with an exception. The margin to

7

be provided between C task stack and VM C stack can

be determined by static analysis of the code (static stack

analysis). This mechanism is implemented in the VM in

order to prevent any issue with recursive C function

calls.

c. MicroPython Stack Usage

Any memory required for the MicroPython OBCP stack

is allocated in a dedicated memory area, specified when

starting the VM. In case of stack overflow, this is

detected by the VM and the OBCP execution is stopped

with an exception.

d. MicroPython Heap Usage

Any memory required for the MicroPython OBCP heap

is allocated in a dedicated memory area, specified when

starting the VM. In case of memory shortage, this is

detected by the VM and the OBCP execution is stopped

with an exception. As the allocation of memory in the

heap is not deterministic in term of CPU usage

(dynamic allocation and free), there is a specific

function to lock access to the heap to the OBCP.

Typically, heap access can be granted during OBCP

initialisation but locked once that stage is completed.

e. Interface with OBSW

The MicroPython VM and the OBCP VM Interface

perform preliminary checks of all input parameters, and

raise an error before executing the requested function.

This allows the VM to generate specific exceptions

depending on the error (floating-point exception,

memory exception, invalid type exception, etc.). As a

general principle, all errors detected by the VM or by

the OBCP Engine result in a MicroPython exception.

Critical errors also immediately abort the OBCP

execution.

f. Floating-Point Errors

Floating-point errors are mainly avoided by careful

check of arguments whenever a floating-point operation

is performed. However, they are nearly impossible to

predict in all situations: floating-point exceptions can

occur when calling mathematical library functions, but

also during simple addition, multiplication or division

operations.

For this reason, floating-point exceptions are treated

specifically for the OBCP Engine. In case a floating-

point trap (trap 0x08) occurs, if the execution context is

a MicroPython VM task, then the corresponding OBCP

execution is immediately aborted. If the context is not a

MicroPython VM task, then the nominal exception

handling is executed – typically a processor reset.

4.7 Test Approach

The MicroPython VM has then been submitted to

intensive testing.

For the MicroPython VM, the following tests are

executed:

 All relevant tests defined in the frame of the

MicroPython VM master branch and MicroPython

VM for LEON branch;

 C Python standard test suite for the core Python

language (math functions, list, dictionary, etc.);

 Additional tests for improvement of the code coverage

(in particular regarding exception handling)

As already indicated, the unit test objectives have been

met through end-to-end testing. End-to-end testing

means that a MicroPython script is produced and

compiled. It is then uploaded for execution by the

MicroPython VM. The output of the script is retrieved

from the standard output (LEON UART line, but could

be any other interface) and compared with the expected

result.

All tests are automated. They are first executed on a

LEON emulator (Spacebel Target Simulator). Then the

tests are repeated in the EUCLID SVF (based on ESOC

LEON Emulator) and in the EUCLID FUMO (hardware

test bench).

A test run is performed on LEON emulator with code

instrumentation in order to gather the code coverage

measurements.

5 CONCLUSION

A new generation OBCP solution has been developed

based on the Python Scripting Language and on the

MicroPython Virtual Machine as well as on surrounding

OBSW services, which implement the so called OBCP

Engine.

The OBCP Engine development followed a classical

OBSW development process. It adheres to space

standards for category B software and it produced the

standard ECSS documentation.

The MicroPython VM has been submitted to intensive

testing and to static code analysis and the discovered

issues have all been fixed or properly justified. Special

fault containment measures have been implemented to

avoid propagation of errors stemming from an OBCP or

from the VM. Additional technical improvements have

been brought in view of the integration and use on

board. A coherent set of documents has been produced,

reflecting the ECSS processes that have been performed

for the MicroPython VM qualification.

8

The MicroPython VM has been integrated with the

OBCP Engine and demonstrated in the EUCLID

OBSW, on a LEON2 processor, with the ESA qualified

RTEMS and Mathematical Library.

The activity results in two reusable building blocks that

can be used jointly or separately:

 the MicroPython VM and

 the OBCP Engine.

EUCLID should be the first spacecraft to benefit from

these new building blocks.

6 REFERENCES

1. ECSS-E-ST-70-01C – Space engineering – Spacecraft on-board

control procedures, 16/04/2010

2. ECSS-E-70-41A – Ground systems and operations Telemetry and

Telecommand packet utilization, 30/01/2003

2’. ECSS-E-70-41C – Ground systems and operations Telemetry and

Telecommand packet utilization, 154/04/2016

3. “Porting of MicroPython to LEON platforms” David Sanchez de la

Llana, Damien George, DASIA 2016

4. http://www.micropython.org

http://www.micropython.org/

