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WHAT IS MICROPYTHON?

MicroPython is:
I a complete reimplementation of Python
I designed to be efficient with resources
I designed to run bare metal

MicroPython includes:
I a compiler, runtime and familiar REPL
I support for basic libraries (modules), most begin with ‘u’
I extra modules to control hardware

TRY IT OUT!

I download the firmware from micropython.org/download
I try it out online at micropython.org/unicorn
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FAST AND EFFICIENT MICROPYTHON SCRIPTS

time – storage – energy use

Aim of this talk:

I give some insight to how MicroPython works internally

I based on insight, provide tips and tricks for efficiency

I work through some fun examples!
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I Blink LED: 50kHz too slow!

I Read data: 1.5MB/sec too slow!
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INTERNAL ARCHITECTURE

external bindings

user defined builtins using C
or other native language at

compile t ime

import

builtin modules are added to scope
user modules are compiled and executed

parse
tree

tokens

eval/exec/compile stringREPL prompt user scripts

runt ime

support code for executing Python code

builtin types (int, float, str, tuple, list, dict, ...)
builtin exceptions (TypeError, IndexError, ValueError, ...)

builtin functions (max, min, range, sort, sum, ...)
builtin modules (sys, os, array, math, ...)

- load/store global variables
- execute functions/methods by dispatching

- glue code, etc

virtual machine

executes bytecode

viper code

machine code

typed version of Python
can be executed directly

native code

machine code

proper Python semantics
can be executed directly
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source info
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bytecode data
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compiler

turn parse tree
into code
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stream of tokens

parser

turn tokens into
a parse tree

calls

calls

can load

calls

calls

calls

executed by

produces

produces

can produce

produces

produces

produces



COMPILER

I reads input stream character-by-character

I can leave memory fragmented from parse tree

I all identifiers are left interned/stored in RAM

EMITTERS

I uses RAM to store generated code

I bytecode

I native machine code (x86, x64, ARM, Thumb, Xtensa)

I inline assembler
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MICROPYTHON BYTECODES



EXAMPLE SCRIPT

00 LOAD_GLOBAL print

03 LOAD_CONST_STRING "sleep"

def do_sleep(d): 06 LOAD_FAST 0

print("sleep", d) 07 CALL_FUNCTION n=2 nkw=0

time.sleep(d) 09 POP_TOP

10 LOAD_GLOBAL time

13 LOAD_METHOD sleep

16 LOAD_FAST 0

17 CALL_METHOD n=1 nkw=0

19 POP_TOP

20 LOAD_CONST_NONE

21 RETURN_VALUE
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MEMORY ALLOCATION

Many core constructs don’t allocate on the heap:

I expressions

I if, while, for and try statements

I local variables

I small integer arithmetic

I inplace operations on existing data structures

I calling functions/methods with positional or keyword args

I some builtins: all, any, callable, getattr, hasattr,

isinstance, issubclass, len, max, min, ord, print, sum

Common things that do allocate on the heap:

I importing
I defining functions and classes
I assigning global variables for the first time
I creating data structures
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TIPS: CPU TIME

I use functions, not global scope

I use local variables

I cache module functions and object methods as locals

I cache self variables as locals

I prefer longer expressions, not split up ones

I runtime is faster than Python, use it; eg str.startswith

I from micropython import const; X = const(1)

I 1 << 3 is okay, will be optimised!
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TIPS: RAM USAGE

I don’t use heap when possible

I shorter variable names, reuse them; eg x, y, i, len, var

I temporary buffers: self.buf1 = bytearray(1)

I use XXX_into methods

I don’t use * or ** args

I from micropython import const; _X = const(1)

I script minification

I use mpy-cross to produce .mpy

I ultimate solution: freeze scripts into the firmware

D.P. George Writing fast and efficient MicroPython 11/16



I Blink LED: 50kHz too slow, make it faster!
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I Read data: 1.5MB/sec too slow, make it faster!
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OTHER OPTIMISATIONS

I energy use: faster code can go to sleep longer

I programmer time

I debugging effort

I maintenance effort
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SUMMARY

I optimise at the end, only the things that are bottlenecks!

I naive Python code roughly 100x slower than C

I BUT! can usually do a lot better

I use runtime functions/methods and C modules (eg re)

I use locals, preallocate memory, cache things
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www.micropython.org

forum.micropython.org

github.com/micropython


