
Writing fast and efficient MicroPython

Damien P. George (George Robotics)

PyCon AU, Sydney, 24th August 2018

WHAT IS MICROPYTHON?

MicroPython is:
I a complete reimplementation of Python
I designed to be efficient with resources
I designed to run bare metal

MicroPython includes:
I a compiler, runtime and familiar REPL
I support for basic libraries (modules), most begin with ‘u’
I extra modules to control hardware

TRY IT OUT!

I download the firmware from micropython.org/download
I try it out online at micropython.org/unicorn

D.P. George Writing fast and efficient MicroPython 2/16

FAST AND EFFICIENT MICROPYTHON SCRIPTS

time – storage – energy use

Aim of this talk:

I give some insight to how MicroPython works internally

I based on insight, provide tips and tricks for efficiency

I work through some fun examples!

D.P. George Writing fast and efficient MicroPython 3/16

I Blink LED: 50kHz too slow!

I Read data: 1.5MB/sec too slow!

D.P. George Writing fast and efficient MicroPython 4/16

INTERNAL ARCHITECTURE

external bindings

user defined builtins using C
or other native language at

compile t ime

import

builtin modules are added to scope
user modules are compiled and executed

parse
tree

tokens

eval/exec/compile stringREPL prompt user scripts

runt ime

support code for executing Python code

builtin types (int, float, str, tuple, list, dict, ...)
builtin exceptions (TypeError, IndexError, ValueError, ...)

builtin functions (max, min, range, sort, sum, ...)
builtin modules (sys, os, array, math, ...)

- load/store global variables
- execute functions/methods by dispatching

- glue code, etc

virtual machine

executes bytecode

viper code

machine code

typed version of Python
can be executed directly

native code

machine code

proper Python semantics
can be executed directly

bytecode

source info
line info
bytecode data

executed by VM

compiler

turn parse tree
into code

lexer

turn script into a
stream of tokens

parser

turn tokens into
a parse tree

calls

calls

can load

calls

calls

calls

executed by

produces

produces

can produce

produces

produces

produces

COMPILER

I reads input stream character-by-character

I can leave memory fragmented from parse tree

I all identifiers are left interned/stored in RAM

EMITTERS

I uses RAM to store generated code

I bytecode

I native machine code (x86, x64, ARM, Thumb, Xtensa)

I inline assembler

D.P. George Writing fast and efficient MicroPython 6/16

MICROPYTHON BYTECODES

EXAMPLE SCRIPT

00 LOAD_GLOBAL print

03 LOAD_CONST_STRING "sleep"

def do_sleep(d): 06 LOAD_FAST 0

print("sleep", d) 07 CALL_FUNCTION n=2 nkw=0

time.sleep(d) 09 POP_TOP

10 LOAD_GLOBAL time

13 LOAD_METHOD sleep

16 LOAD_FAST 0

17 CALL_METHOD n=1 nkw=0

19 POP_TOP

20 LOAD_CONST_NONE

21 RETURN_VALUE

D.P. George Writing fast and efficient MicroPython 8/16

MEMORY ALLOCATION

Many core constructs don’t allocate on the heap:

I expressions

I if, while, for and try statements

I local variables

I small integer arithmetic

I inplace operations on existing data structures

I calling functions/methods with positional or keyword args

I some builtins: all, any, callable, getattr, hasattr,

isinstance, issubclass, len, max, min, ord, print, sum

Common things that do allocate on the heap:

I importing
I defining functions and classes
I assigning global variables for the first time
I creating data structures

D.P. George Writing fast and efficient MicroPython 9/16

TIPS: CPU TIME

I use functions, not global scope

I use local variables

I cache module functions and object methods as locals

I cache self variables as locals

I prefer longer expressions, not split up ones

I runtime is faster than Python, use it; eg str.startswith

I from micropython import const; X = const(1)

I 1 << 3 is okay, will be optimised!

D.P. George Writing fast and efficient MicroPython 10/16

TIPS: RAM USAGE

I don’t use heap when possible

I shorter variable names, reuse them; eg x, y, i, len, var

I temporary buffers: self.buf1 = bytearray(1)

I use XXX_into methods

I don’t use * or ** args

I from micropython import const; _X = const(1)

I script minification

I use mpy-cross to produce .mpy

I ultimate solution: freeze scripts into the firmware

D.P. George Writing fast and efficient MicroPython 11/16

I Blink LED: 50kHz too slow, make it faster!

D.P. George Writing fast and efficient MicroPython 12/16

I Read data: 1.5MB/sec too slow, make it faster!

D.P. George Writing fast and efficient MicroPython 13/16

OTHER OPTIMISATIONS

I energy use: faster code can go to sleep longer

I programmer time

I debugging effort

I maintenance effort

D.P. George Writing fast and efficient MicroPython 14/16

SUMMARY

I optimise at the end, only the things that are bottlenecks!

I naive Python code roughly 100x slower than C

I BUT! can usually do a lot better

I use runtime functions/methods and C modules (eg re)

I use locals, preallocate memory, cache things

D.P. George Writing fast and efficient MicroPython 15/16

www.micropython.org

forum.micropython.org

github.com/micropython

